29 research outputs found

    Optimal Equilibria of the Best Shot Game

    Get PDF
    We consider any network environment in which the “best shot game” is played. This is the case where the possible actions are only two for every node (0 and 1), and the best response for a node is 1 if and only if all her neighbors play 0. A natural application of the model is one in which the action 1 is the purchase of a good, which is locally a public good, in the sense that it will be available also to neighbors. This game will typically exhibit a great multiplicity of equilibria. Imagine a social planner whose scope is to find an optimal equilibrium, i.e. one in which the number of nodes playing 1 is minimal. To find such an equilibrium is a very hard task for any non-trivial network architecture. We propose an implementable mechanism that, in the limit of infinite time, reaches an optimal equilibrium, even if this equilibrium and even the network structure is unknown to the social planner.Networks, Best Shot Game, Simulated Annealing

    Message passing for quantified Boolean formulas

    Full text link
    We introduce two types of message passing algorithms for quantified Boolean formulas (QBF). The first type is a message passing based heuristics that can prove unsatisfiability of the QBF by assigning the universal variables in such a way that the remaining formula is unsatisfiable. In the second type, we use message passing to guide branching heuristics of a Davis-Putnam Logemann-Loveland (DPLL) complete solver. Numerical experiments show that on random QBFs our branching heuristics gives robust exponential efficiency gain with respect to the state-of-art solvers. We also manage to solve some previously unsolved benchmarks from the QBFLIB library. Apart from this our study sheds light on using message passing in small systems and as subroutines in complete solvers.Comment: 14 pages, 7 figure

    Stochastic optimization by message passing

    Full text link
    Most optimization problems in applied sciences realistically involve uncertainty in the parameters defining the cost function, of which only statistical information is known beforehand. In a recent work we introduced a message passing algorithm based on the cavity method of statistical physics to solve the two-stage matching problem with independently distributed stochastic parameters. In this paper we provide an in-depth explanation of the general method and caveats, show the details of the derivation and resulting algorithm for the matching problem and apply it to a stochastic version of the independent set problem, which is a computationally hard and relevant problem in communication networks. We compare the results with some greedy algorithms and briefly discuss the extension to more complicated stochastic multi-stage problems.Comment: 31 pages, 8 figure

    Statistical Mechanics of maximal independent sets

    Full text link
    The graph theoretic concept of maximal independent set arises in several practical problems in computer science as well as in game theory. A maximal independent set is defined by the set of occupied nodes that satisfy some packing and covering constraints. It is known that finding minimum and maximum-density maximal independent sets are hard optimization problems. In this paper, we use cavity method of statistical physics and Monte Carlo simulations to study the corresponding constraint satisfaction problem on random graphs. We obtain the entropy of maximal independent sets within the replica symmetric and one-step replica symmetry breaking frameworks, shedding light on the metric structure of the landscape of solutions and suggesting a class of possible algorithms. This is of particular relevance for the application to the study of strategic interactions in social and economic networks, where maximal independent sets correspond to pure Nash equilibria of a graphical game of public goods allocation
    corecore